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UNIT-3 
SYLLABUS 
Cleansing, integrating, and transforming data: Cleansing data, correct errors as early 
as possible, combining data from different data sources, Transforming data  
Exploratory data analysis, Build the models: Model and variable selection, Model 
execution, Model diagnostics and model comparison 
 
Step 3: Cleansing, integrating, and transforming data: - 
The data received from the data retrieval phase is likely to be “a diamond in the rough.” Your 
task now is to sanitize and prepare it for use in the modeling and reporting phase. Doing so is 
tremendously important because your models will perform better and you’ll lose less time 
trying to fix strange output. It can’t be mentioned nearly enough times: garbage in equals 
garbage out. Your model needs the data in a specific format, so data transformation will 
always come into play. It’s a good habit to correct data errors as early on in the process as 
possible. However, this isn’t always possible in a realistic setting, so you’ll need to take 
corrective actions in your program. 
Figure 2.4 shows the most common actions to take during the data cleansing, integration, and 
transformation phase 
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Cleansing data: - 
Data cleansing is a sub process of the data science process that focuses on removing 

errors in your data so your data becomes a true and consistent representation of the processes 
it originates from. 

By “true and consistent representation” we imply that at least two types of errors 
exist. The first type is the interpretation error, such as when you take the value in your data 
for granted, like saying that a person’s age is greater than 300 years. The second type of error 
points to inconsistencies between data sources or against your company’s standardized 
values. An example of this class of errors is putting “Female” in one table and “F” in another 
when they represent the same thing: that the person is female. Another example is that you 
use Pounds in one table and Dollars in another. Too many possible errors exist for this list to 
be exhaustive, but table 2.2 shows an overview of the types of errors that can be detected with 
easy checks—the “low hanging fruit,” as it were. 
 

 

 
Sometimes you’ll use more advanced methods, such as simple modeling, to find and 

identify data errors; diagnostic plots can be especially insightful. For example, in figure 2.5 we 
use a measure to identify data points that seem out of place. We do a regression to get 
acquainted with the data and detect the influence of individual observations on the regression 
line. When a single observation has too much influence, this can point to an error in the data, 
but it can also be a valid point. At the data cleansing stage, these advanced methods are, 
however, rarely applied and often regarded by certain data scientists as overkill. 
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 DATA ENTRY ERRORS: - 
Data collection and data entry are error-prone processes. They often require human 

intervention, and because humans are only human, they make typos or lose their 
concentration for a second and introduce an error into the chain. But data collected by 
machines or computers isn’t free from errors either. Errors can arise from human 
sloppiness, whereas others are due to machine or hardware failure. Examples of errors 
originating from machines are transmission errors or bugs in the extract, transform, and 
load phase (ETL). 

For small data sets you can check every value by hand. Detecting data errors when the 
variables you study don’t have many classes can be done by tabulating the data with counts. 
When you have a variable that can take only two values: “Good” and “Bad”, you can create a 
frequency table and see if those are truly the only two values present. In table 2.3, the 
values “Godo” and “Bade” point out something went wrong in at least 16 cases. 
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Most errors of this type are easy to fix with simple assignment statements and if-
thenelse rules: 

 
 REDUNDANT WHITESPACE: - 

Whitespaces tend to be hard to detect but cause errors like other redundant characters 
would. Who hasn’t lost a few days in a project because of a bug that was caused by 
whitespaces at the end of a string? You ask the program to join two keys and notice that 
observations are missing from the output file. After looking for days through the code, you 
finally find the bug. Then comes the hardest part: explaining the delay to the project 
stakeholders. The cleaning during the ETL phase wasn’t well executed, and keys in one 
table contained a whitespace at the end of a string. This caused a mismatch of keys such as 
“FR ” – “FR”, dropping the observations that couldn’t be matched. 

If you know to watch out for them, fixing redundant whitespaces is luckily easy enough 
in most programming languages. They all provide string functions that will remove the 
leading and trailing whitespaces. For instance, in Python you can use the strip() function to 
remove leading and trailing spaces. 
 FIXING CAPITAL LETTER MISMATCHES: - Capital letter mismatches are common. 

Most programming languages make a distinction between “Brazil” and “brazil”. In this 
case you can solve the problem by applying a function that returns both strings in 
lowercase, such as .lower() in Python. “Brazil”.lower() == “brazil”.lower() should result 
in true. 

 
 IMPOSSIBLE VALUES AND SANITY CHECKS: - 

Sanity checks are another valuable type of data check. Here you check the value against 
physically or theoretically impossible values such as people taller than 3 meters or 
someone with an age of 299 years. Sanity checks can be directly expressed with rules: 

 
 

 OUTLIERS: - 
An outlier is an observation that seems to be distant from other observations or, more 

specifically, one observation that follows a different logic or generative process than the 
other observations. The easiest way to find outliers is to use a plot or a table with the 
minimum and maximum values. An example is shown in figure 2.6. 

The plot on the top shows no outliers, whereas the plot on the bottom shows possible 
outliers on the upper side when a normal distribution is expected. The normal 
distribution, or Gaussian distribution, is the most common distribution in natural 
sciences. 
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Figure 2.6 Distribution plots are helpful in detecting outliers and helping you 
understand the variable. 
 

It shows most cases occurring around the average of the distribution and the 
occurrences decrease when further away from it. The high values in the bottom graph can 
point to outliers when assuming a normal distribution. As we saw earlier with the 
regression example, outliers can gravely influence your data modeling, so investigate them 
first. 

 
 DEALING WITH MISSING VALUES: - 

Missing values aren’t necessarily wrong, but you still need to handle them separately; 
certain modeling techniques can’t handle missing values. They might be an indicator that 
something went wrong in your data collection or that an error happened in the ETL 
process. Common techniques data scientists use are listed in table 2.4. 
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Which technique to use at what time is dependent on your particular case? If, for 

instance, you don’t have observations to spare, omitting an observation is probably not an 
option. If the variable can be described by a stable distribution, you could impute based on 
this. However, maybe a missing value actually means “zero”? This can be the case in sales 
for instance: if no promotion is applied on a customer basket, that customer’s promo is 
missing, but most likely it’s also 0, no price cut. 
 

 DEVIATIONS FROM A CODE BOOK: - 
Detecting errors in larger data sets against a code book or against standardized values 

can be done with the help of set operations. A code book is a description of your data, a 
form of metadata. It contains things such as the number of variables per observation, the 
number of observations, and what each encoding within a variable means. (For instance “0” 
equals “negative”, “5” stands for “very positive”.) A code book also tells the type of data 
you’re looking at: is it hierarchical, graph, something else? 

You look at those values that are present in set A but not in set B. These are values that 
should be corrected. It’s no coincidence that sets are the data structure that we’ll use when 
we’re working in code. It’s a good habit to give your data structures additional thought; it 
can save work and improve the performance of your program. 

If you have multiple values to check, it’s better to put them from the code book into a 
table and use a difference operator to check the discrepancy between both tables. 
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 DIFFERENT UNITS OF MEASUREMENT: - 
When integrating two data sets, you have to pay attention to their respective units of 

measurement. An example of this would be when you study the prices of gasoline in the 
world. To do this you gather data from different data providers. Data sets can contain prices 
per gallon and others can contain prices per liter. A simple conversion will do the trick in 
this case. 
 

 DIFFERENT LEVELS OF AGGREGATION: - 
Having different levels of aggregation is similar to having different types of measurement. 
An example of this would be a data set containing data per week versus one containing data 
per work week. This type of error is generally easy to detect, and summarizing (or the 
inverse, expanding) the data sets will fix it. 
 

Correct errors as early as possible: - 
A good practice is to mediate data errors as early as possible in the data collection chain 

and to fix as little as possible inside your program while fixing the origin of the problem. 
Retrieving data is a difficult task, and organizations spend millions of dollars on it in the hope 
of making better decisions. The data collection process is errorprone, and in a big organization 
it involves many steps and teams 

Data should be cleansed when acquired for many reasons: 
 Not everyone spots the data anomalies. Decision-makers may make costly mistakes on 

information based on incorrect data from applications that fail to correct for the faulty data. 
 If errors are not corrected early on in the process, the cleansing will have to be done for 

every project that uses that data. 
 Data errors may point to a business process that isn’t working as designed. For instance, 

both authors worked at a retailer in the past, and they designed a couponing system to 
attract more people and make a higher profit. During a data science project, we discovered 
clients who abused the couponing system and earned money while purchasing groceries. 
The goal of the couponing system was to stimulate cross-selling, not to give products away 
for free. This flaw cost the company money and nobody in the company was aware of it. In 
this case the data wasn’t technically wrong but came with unexpected results. 

 Data errors may point to defective equipment, such as broken transmission lines and 
defective sensors. 

 Data errors can point to bugs in software or in the integration of software that may be 
critical to the company. While doing a small project at a bank we discovered that two 
software applications used different local settings. This caused problems with numbers 
greater than 1,000. For one app the number 1.000 meant one, and for the other it meant 
one thousand. 
Fixing the data as soon as it’s captured is nice in a perfect world. Sadly, a data scientist 

doesn’t always have a say in the data collection and simply telling the IT department to fix 
certain things may not make it so. If you can’t correct the data at the source, you’ll need to 
handle it inside your code. Data manipulation doesn’t end with correcting mistakes; you still 
need to combine your incoming data. 
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As a final remark: always keep a copy of your original data (if possible). Sometimes you 
start cleaning data but you’ll make mistakes: impute variables in the wrong way, delete 
outliers that had interesting additional information, or alter data as the result of an initial 
misinterpretation. If you keep a copy you get to try again. For “flowing data” that’s 
manipulated at the time of arrival, this isn’t always possible and you’ll have accepted a period 
of tweaking before you get to use the data you are capturing. One of the more difficult things 
isn’t the data cleansing of individual data sets however, it’s combining different sources into a 
whole that makes more sense. 
 
Combining data from different data sources: - 

Your data comes from several different places, and in this sub step we focus on integrating 
these different sources. Data varies in size, type, and structure, ranging from databases and 
Excel files to text documents. 
 THE DIFFERENT WAYS OF COMBINING DATA: - 

You can perform two operations to combine information from different data sets. The 
first operation is joining: enriching an observation from one table with information from 
another table. The second operation is appending or stacking: adding the observations of 
one table to those of another table. 

When you combine data, you have the option to create a new physical table or a virtual 
table by creating a view. The advantage of a view is that it doesn’t consume more disk 
space. 
 

 JOINING TABLES: - 
Joining tables allows you to combine the information of one observation found in one 

table with the information that you find in another table. The focus is on enriching a single 
observation. Let’s say that the first table contains information about the purchases of a 
customer and the other table contains information about the region where your customer 
lives. Joining the tables allows you to combine the information so that you can use it for 
your model, as shown in figure 2.7. 

 
To join tables, you use variables that represent the same object in both tables, such as a 

date, a country name, or a Social Security number. These common fields are known as keys. 
When these keys also uniquely define the records in the table they are called primary keys. 
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One table may have buying behavior and the other table may have demographic 
information on a person. In figure 2.7 both tables contain the client name, and this makes it 
easy to enrich the client expenditures with the region of the client. People who are 
acquainted with Excel will notice the similarity with using a lookup function. 
 

 APPENDING TABLES: - 
Appending or stacking tables is effectively adding observations from one table to another 
table. Figure 2.8 shows an example of appending tables. One table contains the 
observations from the month January and the second table contains observations from the 
month February. The result of appending these tables is a larger one with the observations 
from January as well as February. The equivalent operation in set theory would be the 
union, and this is also the command in SQL, the common language of relational databases. 
Other set operators are also used in data science, such as set difference and intersection. 

 
 USING VIEWS TO SIMULATE DATA JOINS AND APPENDS: - 

To avoid duplication of data, you virtually combine data with views. In the previous 
example we took the monthly data and combined it in a new physical table. The problem is 
that we duplicated the data and therefore needed more storage space. In the example we’re 
working with, that may not cause problems, but imagine that every table consists of 
terabytes of data; then it becomes problematic to duplicate the data. For this reason, the 
concept of a view was invented. A view behaves as if you’re working on a table, but this 
table is nothing but a virtual layer that combines the tables for you. Figure 2.9 shows how 
the sales data from the different months is combined virtually into a yearly sales table 
instead of duplicating the data. Views do come with a drawback, however. While a table join 
is only performed once, the join that creates the view is recreated every time it’s queried, 
using more processing power than a pre-calculated table would have. 
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 ENRICHING AGGREGATED MEASURES: - 
Data enrichment can also be done by adding calculated information to the table, such as the 
total number of sales or what percentage of total stock has been sold in a certain region 
(figure 2.10). 
Extra measures such as these can add perspective. Looking at figure 2.10, we now have an 
aggregated data set, which in turn can be used to calculate the participation of each product 
within its category. This could be useful during data exploration but more so when creating 
data models. As always this depends on the exact case, but from our experience models 
with “relative measures” such as % sales (quantity of product sold/total quantity sold) tend 
to outperform models that use the raw numbers (quantity sold) as input. 
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Transforming data: - 
Certain models require their data to be in a certain shape. Now that you’ve cleansed and 
integrated the data, this is the next task you’ll perform: transforming your data so it takes a 
suitable form for data modeling. 
 
TRANSFORMING DATA: - 
Relationships between an input variable and an output variable aren’t always linear. Take, for 
instance, a relationship of the form y = aebx. Taking the log of the independent variables 
simplifies the estimation problem dramatically. Figure 2.11 shows how transforming the input 
variable greatly simplifies the estimation problem. Other times you might want to combine 
two variables into a new variable. 

 

 

 

 
 
REDUCING THE NUMBER OF VARIABLES: - 
Sometimes you have too many variables and need to reduce the number because they don’t 
add new information to the model. Having too many variables in your model makes the model 
difficult to handle, and certain techniques don’t perform well when you overload them with 
too many input variables. For instance, all the techniques based on a Euclidean distance 
perform well only up to 10 variables. 
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Data scientists use special methods to reduce the number of variables but retain the maximum 
amount of data. Figure 2.12 shows how reducing the number of variables makes it easier to 
understand the key values. It also shows how two variables account for 50.6% of the variation 
within the data set (component1 = 27.8% + component2 = 22.8%). These variables, called 
“component1” and “component2,” are both combinations of the original variables. They’re the 
principal components of the underlying data structure. 

 
TURNING VARIABLES INTO DUMMIES: - 
Variables can be turned into dummy variables (figure 2.13). Dummy variables can only take 
two values: true(1) or false(0). They’re used to indicate the absence of a categorical effect that 
may explain the observation. In this case you’ll make separate columns for the classes stored in 
one variable and indicate it with 1 if the class is present and 0 otherwise. An example is 
turning one column named Weekdays into the columns Monday through Sunday. You use an 
indicator to show if the observation was on a Monday; you put 1 on Monday and 0 elsewhere. 
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We introduced the third step in the data science process—cleaning, transforming, and 
integrating data—which changes your raw data into usable input for the modeling phase. The 
next step in the data science process is to get a better understanding of the content of the data 
and the relationships between the variables and observations. 
 
Step 4: Exploratory data analysis: - 
During exploratory data analysis you take a deep dive into the data (see figure 2.14). 
Information becomes much easier to grasp when shown in a picture, therefore you mainly use 
graphical techniques to gain an understanding of your data and the interactions between 
variables. This phase is about exploring data, so keeping your mind open and your eyes peeled 
is essential during the exploratory data analysis phase. The goal isn’t to cleanse the data, but 
it’s common that you’ll still discover anomalies you missed before, forcing you to take a step 
back and fix them. 
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The visualization techniques you use in this phase range from simple line graphs or 
histograms, as shown in figure 2.15, to more complex diagrams such as Sankey and network 
graphs. Sometimes it’s useful to compose a composite graph from simple graphs to get even 
more insight into the data. Other times the graphs can be animated or made interactive to 
make it easier. 

       
 

 
These plots can be combined to provide even more insight, as shown in figure 2.16. 
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Overlaying several plots is common practice. In figure 2.17 we combine simple graphs into a 
Pareto diagram, or 80-20 diagram. 

 
 
Figure 2.18 shows another technique: brushing and linking. With brushing and linking you 
combine and link different graphs and tables (or views) so changes in one graph are 
automatically transferred to the other graphs. This interactive exploration of data facilitates 
the discovery of new insights.  
Figure 2.18 shows the average score per country for questions. Not only does this indicate a 
high correlation between the answers, but it’s easy to see that when you select several points 
on a subplot, the points will correspond to similar points on the other graphs. In this case the 
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selected points on the left graph correspond to points on the middle and right graphs, although 
they correspond better in the middle and right graphs. 

 
 
Two other important graphs are the histogram shown in figure 2.19 and the boxplot shown in 
figure 2.20.  
In a histogram a variable are cut into discrete categories and the number of occurrences in 
each category are summed up and shown in the graph. The boxplot, on the other hand, doesn’t 
show how many observations are present but does offer an impression of the distribution 
within categories. It can show the maximum, minimum, median, and other characterizing 
measures at the same time. 

 
The techniques we described in this phase are mainly visual, but in practice they’re certainly 
not limited to visualization techniques. Tabulation, clustering, and other modeling techniques 
can also be a part of exploratory analysis. Even building simple models can be a part of this 
step. 
Now that you’ve finished the data exploration phase and you’ve gained a good grasp of your 
data, it’s time to move on to the next phase: building models. 
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Step 5: Build the models: - 
With clean data in place and a good understanding of the content, you’re ready to build models 
with the goal of making better predictions, classifying objects, or gaining an understanding of 
the system that you’re modeling. This phase is much more focused than the exploratory 
analysis step, because you know what you’re looking for and what you want the outcome to be. 
Figure 2.21 shows the components of model building. 

 
 



PVP Siddhartha Institute of Technology, Department of IT                                                         18 | P a g e  
 

The techniques you’ll use now are borrowed from the field of machine learning, data mining, 
and/or statistics. Building a model is an iterative process. The way you build your model 
depends on whether you go with classic statistics or the somewhat more recent machine 
learning school, and the type of technique you want to use. Either way, most models consist of 
the following main steps: 
1. Selection of a modeling technique and variables to enter in the model  
2. Execution of the model  
3. Diagnosis and model comparison 
 
1. Model and variable selection: - 

You’ll need to select the variables you want to include in your model and a modeling 
technique. Your findings from the exploratory analysis should already give a fair idea of 
what variables will help you construct a good model. Many modeling techniques are 
available, and choosing the right model for a problem requires judgment on your part. 
You’ll need to consider model performance and whether your project meets all the 
requirements to use your model, as well as other factors: 
 Must the model be moved to a production environment and, if so, would it be easy to 

implement? 
 How difficult is the maintenance on the model: how long will it remain relevant if left 

untouched?  
 Does the model need to be easy to explain? 
 

2. Model execution: - 
Once you’ve chosen a model you’ll need to implement it in code. Luckily, most 
programming languages, such as Python, already have libraries such as StatsModels or 
Scikit-learn. These packages use several of the most popular techniques. Coding a model is 
a nontrivial task in most cases, so having these libraries available can speed up the process. 
As you can see in the following code, it’s fairly easy to use linear regression (figure 2.22) 
with StatsModels or Scikit-learn. Doing this yourself would require much more effort even 
for the simple techniques.  
The following listing shows the execution of a linear prediction model. 
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For a linear regression, a “linear relation” between each x (predictor) and the y (target) 
variable is assumed, as shown in figure 2.22. 

 
We, however, created the target variable, based on the predictor by adding a bit of 
randomness. It shouldn’t come as a surprise that this gives us a well-fitting model. The 
results.summary() outputs the table in figure 2.23. Mind you, the exact outcome depends on 
the random variables you got. 

 
 

Let’s ignore most of the output we got here and focus on the most important parts: 
 Model fit— For this the R-squared or adjusted R-squared is used. This measure is an 

indication of the amount of variation in the data that gets captured by the model. The 
difference between the adjusted R-squared and the R-squared is minimal here because 
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the adjusted one is the normal one + a penalty for model complexity. A model gets 
complex when many variables (or features) are introduced. You don’t need a complex 
model if a simple model is available, so the adjusted R-squared punishes you for 
overcomplicating. At any rate, 0.893 is high, and it should be because we cheated. Rules 
of thumb exist, but for models in businesses, models above 0.85 are often considered 
good. If you want to win a competition you need in the high 90s. For research however, 
often very low model fits (0.2 even) are found. What’s more important there is the 
influence of the introduced predictor variables. 

 Predictor variables have a coefficient— For a linear model this is easy to interpret. In 
our example if you add “1” to x1, it will change y by “0.7658”. It’s easy to see how finding 
a good predictor can be your route to a Nobel Prize even though your model as a whole 
is rubbish. If, for instance, you determine that a certain gene is significant as a cause for 
cancer, this is important knowledge, even if that gene in itself doesn’t determine 
whether a person will get cancer. The example here is classification, not regression, but 
the point remains the same: detecting influences is more important in scientific studies 
than perfectly fitting models (not to mention more realistic). But when do we know a 
gene has that impact? This is called significance.  

 Predictor significance—Coefficients are great, but sometimes not enough evidence 
exists to show that the influence is there. This is what the p-value is about. A long 
explanation about type 1 and type 2 mistakes is possible here but the short explanations 
would be: if the p-value is lower than 0.05, the variable is considered significant for 
most people. In truth, this is an arbitrary number. It means there’s a 5% chance the 
predictor doesn’t have any influence. Do you accept this 5% chance to be wrong? That’s 
up to you. Several people introduced the extremely significant (p<0.1). 

Linear regression works if you want to predict a value, but what if you want to classify 
something? Then you go to classification models, the best known among them being k-
nearest neighbors. 
As shown in figure 2.24, k-nearest neighbors looks at labeled points nearby an unlabeled 
point and, based on this, makes a prediction of what the label should be. 

 
 
Let’s try it in Python code using the Scikit learn library, as in this next listing. 
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As before, we construct random correlated data and surprise, surprise we get 85% of cases 
correctly classified. If we want to look in depth, we need to score the model. Don’t let 
knn.score() fool you; it returns the model accuracy, but by “scoring a model” we often mean 
applying it on data to make a prediction. 
 
prediction = knn.predict(predictors) 
 
Now we can use the prediction and compare it to the real thing using a confusion matrix. 
 
metrics.confusion_matrix(target,prediction) 
 
We get a 3-by-3 matrix as shown in figure 2.25. 
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3. Model diagnostics and model comparison: - 
You’ll be building multiple models from which you then choose the best one based on 
multiple criteria. Working with a holdout sample helps you pick the best-performing model. 
A holdout sample is a part of the data you leave out of the model building so it can be used 
to evaluate the model afterward. The principle here is simple: the model should work on 
unseen data. You use only a fraction of your data to estimate the model and the other part, 
the holdout sample, is kept out of the equation. The model is then unleashed on the unseen 
data and error measures are calculated to evaluate it. Multiple error measures are 
available, and in figure 2.26 we show the general idea on comparing models. The error 
measure used in the example is the mean square error. 

 
Mean square error is a simple measure: check for every prediction how far it was from the 
truth, square this error, and add up the error of every prediction. 
Figure 2.27 compares the performance of two models to predict the order size from the 
price. The first model is size = 3 * price and the second model is size = 10. To estimate the 
models, we use 800 randomly chosen observations out of 1,000 (or 80%), without showing 
the other 20% of data to the model. Once the model is trained, we predict the values for the 
other 20% of the variables based on those for which we already know the true value, and 
calculate the model error with an error measure. Then we choose the model with the 
lowest error. In this example we chose model 1 because it has the lowest total error. 

 
 

Many models make strong assumptions, such as independence of the inputs, and you have 
to verify that these assumptions are indeed met. This is called model diagnostics. 
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Step 6: Presenting findings and building applications on top of them 
After you’ve successfully analyzed the data and built a well-performing model, you’re 

ready to present your findings to the world (figure 2.28). This is an exciting part; all your hours 
of hard work have paid off and you can explain what you found to the stakeholders. 

 
Sometimes people get so excited about your work that you’ll need to repeat it over and 

over again because they value the predictions of your models or the insights that you 
produced. For this reason, you need to automate your models. This doesn’t always mean that 
you have to redo all of your analysis all the time. Sometimes it’s sufficient that you implement 
only the model scoring; other times you might build an application that automatically updates 
reports, Excel spreadsheets, or PowerPoint presentations. The last stage of the data science 
process is where your soft skills will be most useful, and yes, they’re extremely important. 
 
UNIT WISE IMPORTANT QUESTIONS: - 
1. What are the different types of errors and explain how to remove the errors? 
2. Define error? Explain different types of errors. 
3. Explain different types of error and with possible solutions 
4. Explain different reasons why we should clean the data. 
5. Explain how variables are turned into dummy variables 
6. Explain different ways of combining data. 
7. How can you transform your data so it takes a suitable form for data modeling? 
8. Explain in detail about exploratory data analysis 
9. What are the components of model building? Explain 
10. Explain how model are compared in detail? 
11. Explain in detail about model and variable selection 
12. Explain different techniques to handle missing data along with advantages and 

disadvantages. 
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